

Calculation Progression Policy 2020

Aims and objectives

This policy aims to standardise which strategies will be taught and how children will record their calculations.
This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added.
The division of skills and methods within this calculation policy are based on the requirements of the National Curriculum for the teaching and learning of mathematics and takes into account the progression through our school. Although this policy is set out in year groups, it is important that we consider the prior attainment of our children and move on only when they are ready to take on the next challenge. Mathematical understanding is developed through use of representations that are first of all concrete (e.g. base ten, apparatus), then pictorial (e.g. array, place value counters) to then facilitate abstract working (e.g. columnar addition, long multiplication). Children should not be expected to move onto the next stage if they are not ready or if they are not confident.

The National Curriculum for Mathematics (2014) aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

At Four Lanes Juniors we believe that any calculation needs to have a context so that its purpose can be understood. We provide our children with many opportunities to use and apply their mathematical skills in different situations and to develop their reasoning skills. Our children are taught a variety of methods, both mental and written, so that they develop the skills required to select an efficient method which is determined by the calculation. Children are encouraged to consider if a mental calculation would be appropriate before using written methods.

Children should be encouraged to approximate their answers before calculating and to use a suitable strategy to check for accuracy. Children are taught to use methods which are accurate, reliable and efficient.

When faced with a calculation problem, encourage your child to ask..

- Can I do this in my head?
- Could I do this in my head using drawings or jottings to help me?
- Do I need to use a written method?

Also help your child to estimate and then check the answer. Encourage them to ask...

- Is the answer sensible?

When are children ready for written calculations?

These lists are not exhaustive but are a guide for the teacher to judge when a child is ready to move from informal to formal methods of calculation.

Addition and subtraction	
- Do they know addition and subtraction facts to 20?	Multiplication and Division
- Do they understand place value and can they partition numbers?	• Do they know the 2, 3, 4, 5 and 10 times tables?
- Can they add three single digit numbers mentally?	Do they know the result of multiply by 0 and 1 ?

Year Group Calculation Method Overview
(Teachers are to use their own judgements as to whether individual children are ready to use the methods listed in their year group or if they need to consolidate previous learning

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Exchanging to make 10.	Adding three single digits. Column method - no exchanging.	Column method exchanging (up to 3 digits)	Column method exchanging (up to 4 digits)	Column method exchanging (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method exchanging. (Decimals- with different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column methodno exchanging	Column method with exchanging (up to 3 digits)	Column method with exchanging (up to 4 digits)	Column method with exchanging (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with exchanging. (Decimals- with different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Multiplication within a place value grid	Column multiplication (2 and 3 digits multiplied by 1 digit)	Column multiplication (up to 4-digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1-digit concrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1-digit concrete and pictorial)	Short division (up to 4 digits by a 1-digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2-digit numberInterpret remainders as whole numbers, fractions or round)

Informal jottings (for example number lines) and concrete apparatus will be used to develop an understanding of conceptual relationships

Year 3 ADDITION	Year 4 ADDITION
Using Place value	Using place value
$100 \quad 100$	Count in thousands e.g. knowing 1475+2000 as 1475, 2475, 3475
-	Add multiples of 10, 100 and £1 e.g. 746+200 or 746+40
$450475 \quad 550575$	Partitioning e.g. $746+203$ as $700+200$ and $46+3$ or $746+200+3$
Count in hundreds e.g. knowing 475+200 as 475, 575, 675	
Add multiples of 10, 100 and £1 e.g. $746+200$ or $746+40 \quad 60+70=130$	C-3
Use partitioning: $8+4=12$	700 750 800 850 900 950 1000
$68+74$ as $60+70$ and $8+4$, combining the two totals $8+4=\underline{12}$	Counting on
(Use arrow cards to help this method - it reinforces place $=142$	Add a three-digit and four-digit numbers by adding th, h, t and o
value knowledge)	e.g. $2452+321$ as $2452+300+20+1$
Add three-digit numbers by adding h, t and o e.g. $452+321$ as $452+300+20+1$	Add near multiples of 10, 100 and 1000
Counting on	$\text { e.g. } 3462+2999 \text { as }(3462+3000)-1$
Add three-digit and two-digit numbers by adding h, t and o e.g. $125+34$ as $100+20+30+5+4$	
Add near multiples of 10 and 100	2400
e.g. $67+39$ as $(67+40)-1$	Using number facts
Using number facts	Number bonds to 100 and to the next multiple of 100 e.g. $1353+47$
Number bonds to 100 e.g. $36+64,83+17$ etc. Adding to next ten and next hundred e.g. $176+4=180,435+65=500$	Adjustment when adding 9 and 11 e.g. $27+9$ as $(27+10)-1$ or $36+11$ as $(36+10)+1$
Year 5 ADDITION	Year 6 ADDITION
Using place value	Using place value
Count on in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}$, e.g. knowing what 0.1 more than 0.51 is 	Counting in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}, 0.001 \mathrm{~s}$ e.g. knowing what 0.001 more than 6.725 is
Partitioning e.g. $2.4+5.8$	Partitioning e.g. $9.54+3.25$ as $9+3$ and $0.5+0.2$ and $0.04+0.05$ to get 12.79
$2 \cdot 4+5 \cdot 8$	Counting on
$7-1.2=8.2$	Add two decimal numbers by adding the o then ths then hths or ths
	e.g. $6.31+3.46$ as $6.31+3+0.4+0.06$
Counting on	Add near multiples to 1 and 10 e.g. $6.75+9.95$ as $(6.75+10)-0.05$ or $6.35+0.99$ as
Count on from the greatest number e.g. $6834+3005$ as $9834+5$	$(6.35+1)-0.01$
Add near multiples e.g. $82,472+30,004$ as $(82,472+30,000)+4$	
Add two decimal numbers by adding the o then ths then hths e.g. $5.72+3.05$ as $5.72+$	Using number facts
$3+0.5$	Number bonds to 1 and the next multiple of 1, e.g. $0.63+0.37$ or $2.355+0.645$
Using number facts	Add to next ten, e.g. 4.62+0.38 0.38
Know number bonds to 1 and to the next whole number e.g. $0.4+0.6$ or $5.7+0.3$	1.1
Add to the next 10 from a decimal number e.g. $7.8+2.2=10$	$4 \quad 4.54 .62$

End of Year Expectations (National Curriculum Statements)	Teaching and Learning Strategy	Concrete	Pictorial	Abstract
Key Stage 1 Addition: - read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs - represent and use number bonds within 20 - add one-digit and twodigit numbers to 20 , including zero - solve one-step	Counting on	Counting on using number lines by using cubes or Numicon. Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the pre-made number line and count on in ones or in one jump to find the answer. A bar model which encourages the children to count on \square \square ?	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4 ? What's the total of 4 and 2 ? $4+2=$ Place the larger number in your head and count on the smaller number to find your answer. $5+12=17$
problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $9=?+6$ - solve problems with addition: $>$ using concrete objects and pictorial	Combining two parts to make a whole: partwhole model	Use cubes and other resources/objects to add two numbers together as a group or in a bar.		Use the part-part whole diagram as shown above to move into the abstract.
representations, including those involving numbers, quantities and measures $>$ applying their increasing knowledge of mental and written methods - recall and use addition facts to 20 fluently, and derive and use related facts up to 100 - add numbers using concrete objects, pictorial	Regrouping to make 10.	Regrouping to make 10 by using ten frames and counters/cubes or using Numicon:	Children to draw the ten frame and counters/cubes $9+5=14$ 14 4 Use pictures or a number line. Regroup or partition the smaller number to make 10.	Children to develop an understanding of equality e.g. $6+\square=11$ and $6+5=5+[$ \square and $6+5=\square+4$

representations, and mentally, including
$>$ a two-digit number and ones
$>$ a two-digit number and tens
$>$ two two-digit numbers $>$ adding three onedigit numbers

- show that addition of two numbers can be done in any order (commutative)
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

TO + TO using
base 10.
single digits

Continue to develop understanding of $41+8$
$4+7+6=17$
Put 4 and 6 together to make 10. Add on

Children to represent the concrete using a particular symbol e.g. lines for tens and dot/crosses for ones.

Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.

Looking for ways to make 10:
$30+20=50$
$5+5=10$
$50+10+1=61$
Formal method:

$$
\begin{equation*}
36 \tag{1
1}
\end{equation*}
$$

 7.

Add together three groups of objects. Draw a picture to recombine the groups to make 10 .

Examples of Key Stage 1 varied fluency

How can we use the following representation to prove that $+3=4+4$?

Use concrete or pictorial resources to help explain your method.

Examples of Key Stage 1 reasoning and problem solving

How many different ways can you solve $19+11 ?$

Explain your method to a partner.
Always, Sometimes, Never
odd + odd + odd $=$ odd
Use one-digit numbers to test if this is true egg.
$3+5+7$

Can you use inverse operations to check $5+12=17$?

Which numbers would you add together
first in the following number sentences?
Why would you add those first?

$$
\begin{aligned}
& 3+5+7= \\
& 8+2+6=
\end{aligned}
$$

$$
4+3+4=
$$

Is there always an easier order to add three one-digit numbers?

Eva writes this calculation: $18-5=13$
Which of the following could she use to check her work?

$13+5$	$13-5$
$18-13$	$5+13$

Complete the missing numbers.

$$
5+3=6+
$$ $+6=7+$

\qquad Fill in the circles with either $<,>$ or $=$
$6+4 \bigcirc$ $6+5$ $6+4$
 $3+6$
\square $2+$ \square $5=87$

Find all the possible pairs of numbers that can complete the addition

[^0] pairs?

What is the same about all the pairs of numbers?

	Column method - exchanging HTO + O HTO + TO HTO + HTO

Add up the ones and exchange 10 ones for one 10.

Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.

Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.

$163+52=215$

Use expanded column addition with exchanges before moving onto the formal written method. This can be supported by concrete resources to aid transition to abstract methods.

Examples of Year 3 varied fluency

Complete each box for $400+500$

| Draw It | |
| :---: | :---: | :---: | :---: |
| | Write It
 - hundreds and
 hundreds is
 equal to
 hundreds |

Miss Wilson has 237 marbles in a box. She adds 8 more bags of 10 marbles. How many marbles does she have now? Write the calculation for this problem.

Complete the models.

Examples of Year 3 reasoning and problem solving

Always, Sometimes, Never

When 7 and 5 are added together in the ones column, the digit in the ones column of the answer will always be 2

What other digits would always give a 2 in the ones column? Prove it

Eva and Amir are calculating $783+90$

Whose method do you prefer? Explain why.

Complete the statements to make them correct.

$$
\begin{aligned}
& 487+368 \bigcirc 487+468 \\
& 326+258 \bigcirc 325+259 \\
& 391+600=401+\ldots
\end{aligned}
$$

Explain why you do not have to work out the answers to compare them.

MENTAL STRATEGIES FOR SUBTRACTION

Informal jottings (for example number lines) and concrete apparatus will be used to develop an understanding of conceptual relationships

Year 3 SUBTRACTION	Year 4 SUBTRACTION
Using place value Count back in hundreds e.g. knowing 372-200 as 372,272 , 172 Subtract multiples of 10,100 and $£ 1$ e.g. $476-40=436$ or 436-300 $=136$ 348-143 as $300-100,40-40$ and $8-3$, combining the three totals. (Use arrow cards to help this method - it reinforces place value knowledge) Counting back Subtract two three-digit numbers by counting back in h, t and o e.g. 763-121 as 763-100-20-1 Subtract near multiples of 10 and 100 e.g. 648-199 as (648-200) + 1 Counting up to find the difference Find the difference between two numbers by counting up from the smallest number to the larger, e.g. 121-87 Using number facts Number bonds to 100 e.g. 100-35, 100-48	Using place value Count back in thousands e.g. 4378-3000 as 4378, 3378, 2378, 1378 Take away multiples of 10, 100, 1000 and £1 e.g. 8392-50 or 6723-3000 Partitioning e.g. $£ 5.87-£ 3.04$ as $£ 5-£ 3$ and 7 p -4 p or $7493-2020$ as $7000-2000$ and 90-20 Counting back Count back e.g. 6482-1301 as 6482-1000 then - 300 then -1 Subtract near multiples of 10, 100 and 1000 e.g. 3522-1999 as (3522-2000) +1 Count up to find the difference Find a larger difference between two numbers by counting up from the smaller number to the larger number e.g. 1506-387 Using number facts Number bonds to 100 and to the next multiple of 100 e.g. 100-76 = 24 Adjustment when adding 9 and 11 e.g. 27-9 as (27-10) +1 or 36-11 as (36-10)-1
Year 5 SUBTRACTION	Year 6 SUBTRACTION
Using place value/ Taking away Use place value to subtract decimals e.g. 4.58-0.08 or 6.26-0.2 etc. Take away multiples of power of 10 e.g. 15,672-300 or 4.82-2 Partition or count back e.g. 3964-1051 or 5.72-2.01 Subtract near multiples e.g. 86,456-9999 or 3.58-1.99 Count up to find the difference Find the difference between two numbers by counting up from the smaller to the larger, e.g. 2009-869 Use number facts Derived facts from number bonds to 10 and 100 e.g. $2-0.45$ using $45+55=100$ Number bonds to $£ 1, £ 10$ and $£ 100$ e.g. $£ 4.00-£ 3.86=14 \text { p }$	Using place value/ Taking away Use place value to subtract decimal numbers e.g. $7.78-0.08$ or $16.26-0.2$ etc. Take away multiples of power of 10 e.g. 123,956-400, 686,109-40,000 or $7.82-0.5$ Partition or count back e.g. 3964-1051 or 5.72-2.01 Subtract near multiples e.g. 360,078-99,998 or 12.83-0.99 Counting up Count up to subtract numbers from multiples of 10, 100, 1000, 10,000 Find a difference between two decimal numbers by counting up from the smaller the greater number e.g. 1.2-0.87 Use number facts Derive facts from number bonds to 10 and 100 e.g. $5-0.65$ Number bonds to $£ 1, £ 10$ and $£ 100$ e.g. $£ 7.00-£ 4.37$

\begin{tabular}{|c|c|c|c|c|}
\hline End of Year Expectations (National Curriculum Statements) \& Teaching and Learning Strategy \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Key Stage 1 Subtraction: \\
- read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
\end{tabular} \& Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

\[
6-2=4

\] \& Cross out drawn objects to show what has been taken away. \& | $4-3=1$ \square |
| :--- |
| $\square=4-3$ |

\hline | - represent and use number bonds and related subtraction facts within 20 |
| :--- |
| - subtract one-digit and two-digit numbers to 20, including zero |
| - solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? -9. | \& Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. |
| :--- |
| Use counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. |
| This can progress all the way to counting back using two 2-digit numbers. | \& Put 13 in your head, count back 4. What number are you at? Use your fingers to help or count back on a number line.

\hline | subtraction: |
| :--- |
| $>$ using concrete objects and pictorial representations, including those involving numbers, quantities and measures > applying their increasing knowledge of mental and written methods |
| - recall and use subtraction facts to 20 | \& Find the difference \& | |
| :--- |
| Compare amounts and objects to find the difference. |
| Use cubes to build towers or make bars to find the difference |
| Use basic bar models with items to find the difference | \& | Count on to find the difference. |
| :--- |
| Draw bars to |
| Comparison Bar Models |
| find |
| the difference |
| Lisa is 13 years old. Her sister is 22 years old. between 2 numbers. | \& | Find the difference between 8 and 6. |
| :--- |
| $8-6$, the difference is \qquad ? |
| Children to also explore why 9-7 = 8-6 (the difference, of each digit, has changed by 1 so the difference is the same- this will help when solving 100009987) |

\hline
\end{tabular}

Examples of Key Stage 1 reasoning and problem solving

Find the missing numbers.
Match the number sentences to the number bonds that make the method more efficient.

$$
\begin{array}{ll}
42-5 & 42-2-3 \\
42-7 & 43-3-3 \\
43-8 & 43-3-5 \\
43-6 & 42-2-5
\end{array}
$$

$$
\begin{aligned}
& \text { Is this the only possible solution? Explain } \\
& \text { your answer. } \\
& \text { Make the numbers using Base } 10 \text { to help } \\
& \text { you find your answer. }
\end{aligned}
$$

End of Year Expectations (National Curriculum Statements)	Teaching and Learning Strategy	Concrete	Pictorial	Abstract
Year 3 Subtraction: - subtract numbers mentally, including: $>$ a three-digit number and ones > a three-digit number and tens > a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar subtraction - estimate the answer to a calculation and use inverse operations to check answers - solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	Subtraction on a number line	Counting back on a number line with numbers pre-drawn. (Structured number line.) $12-3=$	Using a number line by counting back unstructured number line: 1. Partition into tens and ones. 2. Subtract the tens. 3. Subtract the ones. When children become more secure they can make larger jumps: $73-39=34$	Draw own number lines and decide own jumps. There were 132 marbles in a jar. Sarah took 48 out of the jar. How many marble were left? 132-48 Then... Then
	Partitioning to subtract (use this method to reinforce place value)	$10-6=4$ Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part?	Use bar model and part whole pictorial representations of missing number problems for subtraction. $526-78=?(448) \quad 332-69=?(263)$ Calculate the missing number in each model. $411-86=?(325)$	Partitioning the numbers using the long method (expanded column method). $\begin{aligned} & 77-25= \\ & 70+7 \\ & -20+5 \\ & \hline 50+2 \end{aligned}=52$
	Column method without exchanging HTO - O HTO - TO HTO - HTO	Use concrete equipment to make the bigger number then take the smaller number away. You can also show how you can partition numbers to subtract.$36-14=22$7 4 30 6 -10 4 20 2	 Draw the Base 10 or place value counters alongside the written calculation to help to show working.	

MENTAL STRATEGIES FOR MULTIPLICATION

Informal jottings (for example number lines) and concrete apparatus will be used to develop an understanding of conceptual relationships

3 MULTIPLICATION	ULTIPLICATION
C	Counting in steps - sequences
Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$, 8s and 10s e.g. colour the multiples on a 100	Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}$, 100 s and 1000 s
square or jumps on a landmarked number line	
Doubling and halving	
Use doubling as a strategy in multiplying by 2 e.g. 18×2 is double 18.	Find doubles to double 100 and beyond using partitioning, using derived facts Begin to double amounts of money e.g. $£ 3.50$ doubled is $£ 7$
Grouping Recognise that multiplying is commutative e.g. $8 \times 4=4 \times 8$	double 34 and double again.
Multiply multiples of 10 by a single-digit using knowledge of known facts e.g. $30 \times 8=240(3 \times 8=24$ then $24 \times 10=240)$	Grouping
Multiply friendly two-digit numbers by single digit numbers e.g. 13×4	Use partitioning to multiply two-digit numbers by single-digit numbers Multiply multiples of 100 by single-digit numbers using table facts e.g. $400 \times 8=3200$ (4 $x 8=32$ then $32 \times 100=3200$)
Known facts	Multiply using near multiples by rounding e.g. 24×19 as (24×20) $=24$
Know $2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}, 5 \mathrm{x}, 8 \mathrm{x}$ and 10 x	Known multiplication facts Known facts up to 12×12
Year 5 MULTIPLICATION	Year 6 MULTIPLICATION
Doubling and halving Use double and halving strategies when multiplying by 2,4 , 8, 5 and 20 Double amounts of money using partitioning e.g. £6.73 doubled is double $£ 6$ plus double 73 p	Doubling and halving Use doubling and halving as strategies in mental multiplication. Double decimal numbers with up to 2 places using partitioning e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)
	Grouping
Grouping	Use partitioning as appropriate e.g. 3060×4 as $(3000 \times 4)+(60 \times 4)$ or 8.4×8 as (8×8) $+(0.4 \times 8)$
Multiply decimals by 10, 100 and 1000 e.g. $3.4 \times 100=340$	
Use partitioning to multiply friendly two-digit and three-digit numbers by single digits e.g. 402×6 as $(400 \times 6)+(2 \times 6)$	Use factors in mental multiplication e.g. 421×6 as 421×3 and doubled or 3.42×5 is half of 3.42×10
Use partitioning to multiply decimal numbers by single digit numbers e.g. 4.5×3 as ($4 \times$ 3) $+(4 \times 0.5)$	Multiply decimal numbers using near multiples by rounding e.g. 4.3×19 as (4.3 x 20) 4.3
Multiply using near multiples by rounding e.g. 32×29 as (32×30) -32	Known facts Use times tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to two-decimal places e.g. $6 \times 4=24$ so $0.06 \times 4=0.24$
Known facts	
Use times tables facts up to 12×12 to multiply multiples of the multiplier e.g. $6 \times 4=24$ so $60 \times 4=240$ and $600 \times 4=2400$ Know square numbers and cube numbers	

\begin{tabular}{|c|c|c|c|c|}
\hline End of Year Expectations (National Curriculum Statements) \& Teaching and Learning Strategy \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Key Stage 1 \\
Multiplication: \\
- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations
\end{tabular} \& Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8
\[
4 \times 2=8
\]
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square
\square
\end{tabular} \& 20

\hline | the support of the teacher |
| :--- |
| - recall and use multiplication facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers |
| - calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) | \& Counting in multiples Repeated Grouping \& Count in multiples supported by concrete objects in equal groups. \& | Children to represent the practical resources in a picture e.g. $\begin{array}{lll} \mathrm{XX} & \mathrm{XX} & \mathrm{XX} \\ \mathrm{XX} & \mathrm{XX} & \mathrm{XX} \end{array}$ |
| :--- |
| Use of a bar model for a more structured method |
| Use a number line or pictures to continue support in counting in multiples. | \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $2,4,6,8,10$ |
| $5,10,15,20,25,30$ |

\hline | and equals (=) |
| :--- |
| signs |
| - show that multiplication of two numbers can be done in any order (commutative) | \& Repeated addition \& \& | There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? |
| :--- |
| 2 add 2 add 2 equals 6 $5+5+5=15$ | \& Write addition sentences to describe objects and pictures.

\hline
\end{tabular}

solve problems

 involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts.Arraysshowing commutative multiplication

Create arrays using counters/ cubes to show multiplication sentences

Draw arrays in different rotations to find commutative multiplication sentences.

Use an array to write multiplication sentences and reinforce repeated addition.

$$
\begin{aligned}
& 5+5+5=15 \\
& 3+3+3+3+3=15 \\
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned}
$$

Examples of Key Stage 1 varied fluency

How many flowers are there altogether?

There are \qquad flowers in each bunch.
There are \qquad flowers altogether.
There are -

How many fingers altogether?

Complete:

There are ___ equal groups with ___ in each group. There are__ 3 s . $\ldots+\ldots=6$
Complete the table.

Picture	Multiplication	Sentence
	$4 \times 10=40$	4 lots of 10 is equal to 40
	$35=7 \times 5$	
		6 lots of 3 is equal to 18

Examples of Key Stage 1 reasoning and problem solving

In a shop, grapes come in bunches of 10

Think of a multiplication to complete:

$$
\begin{aligned}
& 2 \times 5 \\
& 5+5 \\
& 5 \times 2
\end{aligned}
$$

Max wants to buy forty grapes.
Are there enough grapes?

$$
6+6+6>\ldots \times \ldots
$$

Each calculation could explain the image.

Part of this array is hidden.

The total is less than 16

What could the array be?

MENTAL STRATEGIES FOR DIVISION

Informal jottings (for example number lines) and concrete apparatus will be used to develop an understanding of conceptual relationships

Year 3 DIVISION	Year 4 DIVISION
Counting in steps Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$, 8 s and 10s e.g. colour the multiples on a 100 square or make jumps on a landmarked number line e.g. $20 \div 4=$ Doubling and halving Find half of even numbers to 100 , using partitioning Use halving as a strategy in dividing by 2 e.g. $36 \div 2$ is half of 36 Grouping Recognise that dividing is not commutative e.g. $16 \div 2$ is not equal to $2 \div 16$ Relate division to multiplication 'with holes in' e.g. ? $\times 5=30$ is the same as $30 \div 5=$? therefore we can count in 5 s to find the answer Divide multiples of 10 by a single-digit e.g. $240 \div 8=30(24 \div 8=3)$ Known facts Know half of even numbers to 40 and of 0 to 200 e.g. half of 170 is 85 Know $2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}, 5 \mathrm{x}, 8 \mathrm{x}$ and 10 x division facts - use triangular cards to help reinforce related facts e.g. https://www.topmarks.co.uk/Flash.aspx?f=triangularcardsv4	Counting in steps - sequences Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s Doubling and halving Find halves of even numbers to 200 and beyond using partitioning, using derived facts Begin to halve amounts of money e.g. £9 halved is $£ 4.50$ Use halving as a strategy in dividing by 2,4 and 8 e.g. $164 \div 4$ is half of 164 and halved again. Grouping Partition the dividend into known facts e.g. $45 \div 3$ as $30 \div 3$ and $15 \div 3$ Divide multiples of 100 by single digits numbers using division facts e.g. $3200 \div 8=400$ Known facts Know times tables up to 12×12 and all related division facts Use division facts to find unit and non-unit fractions of amounts
Year 5 DIVISION	Year 6 DIVISION
Doubling and halving Halve amounts of money using partitioning e.g. half of $£ 14.84$ is half of $£ 14$ and half of 84 p Use doubling and halving as a strategy in dividing by 2, 4, 8, 5 and 20 e.g. $115 \div 5$ as double $115 \div 10$ Grouping Divide numbers by $10,100,1000$ to obtain decimal answers with up to three places e.g. $340 \div 100=34$ Use 10th, 20th, 30th multiples of the divisor to divide friendly two-digit and three-digit numbers e.g. $186 \div 6$ as $180 \div 6$ plus $6 \div 6$ Find unit and non-unit fractions of large amounts e.g. $3 / 5$ of 265 is $3 \times(265 \div 5)$ Known facts Use division facts up to 12×12 to divide numbers by single-digit numbers e.g. $3600 \div 9$ as $36 \div 9$ Know square numbers and cube numbers	Doubling and halving Use doubling and halving as strategies in mental division. Halve decimal numbers with up to two-places using partitioning e.g. half of 38.86 is half of 38 plus half of 0.86 . Grouping Use 10th, 20th, 30th ... 100th, 200th etc. multiples of the divisor to divide larger numbers e.g. $378 \div 9$ as $360 \div 9$ and $18 \div 9$. Use tests for divisibility e.g. 135 divides by 3 as $1+3+5=9$ and 9 is in the $3 x$ tables. Known facts Use division facts up to 12×12 to divide decimal numbers by single-digit numbers e.g. $1.17 \div 31 / 100$ of $117 \div 3$ (0.39)

End of Year Expectations (National Curriculum Statements)	Teaching and Learning Strategy	Concrete	Pictorial	Abstract
Year 3 Division: - recall and use division facts for the 3, 4 and 8 multiplication tables - write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods - solve problems, including missing number problems, involving division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	Sharing objects into groups	Use concrete resources (cubes, counters etc) to represent numbers/objects in a division problem and share into a given number of groups e.g. There are 12 pieces of fruit. They are shared equally between 3 bowls. How many pieces of fruit are in each bowl? $12 \div 3=4$ - 191	Draw circles to represent number of groups and share out by drawing dots/shapes. $15 \div 5=3$	Begin to link division number sentences to concrete and abstract methods. $8 \div 2$ Sharing equally 8 sweets shared between 2 people, how many do they each get?
	Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Draw representations of the question to group the total to find the answer to the division. Circle the counters in groups of 3 and complete the division. $18 \div 3=6$	How many 3's are in 18? $18 \div 3$ can be modelled as:
	Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
	Division on a number line	Group from zero in jumps of the divisor to find 'how many groups of 3 are there in 15 ?'. $15 \div 3=5$ $0 \quad 1 \quad 5$ O 8 (9) 1011 (1) 11 (15) 1 	Repeated addition or subtraction using a number line with the numbers pre-drawn on. $12 \div 4=$ This method can also be used when looking at division with answers involving remainders. $13 \div 3=4 r 1$	Children need to be able to partition the dividend in different ways.

Examples of Year 3 varied fluency

Use the array to complete the number sentences.

How many squares can you make with 13 lollipop sticks?
There are lollipop sticks.
There are ___groups of 4
There is __ lollipop stick remaining
$13 \div 4=$ __remainder __

ommy uses repeated subtraction to solve $31 \div 4$

$$
\frac{3}{4}
$$

Use Tommy's method to solve 38 divided by 3

Complete the bar models and the calculations.

$24 \div 4=$

Examples of Year 3 reasoning and problem solving

Compare the statements using $<,>$ or $=$

Dora thinks that 88 sweets can be shared equally between eight people.

Is she correct?

Which calculation is the odd one out? Explain your thinking.

Jack has 15 stickers

He sorts his stickers into equal groups but has some stickers remaining. How many stickers could be in each group and how many stickers would be remaining?

End of Year Expectations (National Curriculum Statements)	Teaching and Learning Strategy	Concrete	Pictorial	Abstract
Year 4 Division: - recall division facts for multiplication tables up to 12×12 - use place value, known and derived facts to divide mentally, including dividing by 1 - solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers	Division with and without a remainder	$14 \div 4=3$ r2 Divide objects between groups and see how much is left over	Build on learning from Year 3 to become more confident in finding reminders after division.Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $13 \div 4=3 r 1$ Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r.
	Division by partitioning 2-digits by 1 -digit 3 -digits by 1 -digit	Build on Year 3 division by partitioning by exchanging e.g. Rosie is calculating 96 divided by 4 using place value counters. First, she divides the tens. She has one ten remaining so she exchanges one ten for ten ones. Then, she divides the ones. $96 \div 4=24$	Link this to previous learning of partitioning in multiplication and use of the partwhole model. Begin to use with larger numbers and calculations involving remainders.	 Look for ways to partition the dividend so that known multiplication facts can be used to complete the calculation.
	Repeated subtraction chunking 2-digits by 1 -digit 3 -digits by 1 -digit	Ensure children see/understand the link between grouping on a number line and vertical recording for chunking. $18 \div 3=6$	Introduce the vertical method (also known as the chunking method) using small jumps that children could draw if needed. $\begin{aligned} 72 \div 3= & 3 \longdiv { 7 2 } \\ & -\frac{30}{42} \\ & (10 \times 3) \\ & \frac{-30}{12}(10 \times 3) \\ & -\frac{6}{6} \\ & (2 \times 3) \\ & =24 \end{aligned}$	This is then developed by subtracting larger 'chunks.' Children should continue to use concrete resources alongside this algorithm. Teach children to write 'Fact Boxes' of known multiplication facts to help them to take away larger 'chunks'.$289 \div 8$728 9 - 8 0 2 0 9 1 6 0 20×8 4 9 4 8 1 Answer $=36$ r1

End of Year Expectations (National Curriculum Statements)	Teaching and Learning Strategy	Concrete	Pictorial	Abstract
Year 5 Division: - divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - divide whole numbers and those involving decimals by 10,100 and 1000 - solve problems involving division including using their knowledge of factors and multiples, squares and cubes	Short division 2-digits by 1 -digit 3 -digits by 1 -digit 4-digits by 1 -digit	Children can continue to build on concrete methods taught in previous year groups to support use of short division with larger numbers or within more complex problems.	Build on methods taught in Year 4 and begin to use to solve more complex calculations. Children draw representations of place value counters alongside written methods to help reinforce understanding of division. Without regrouping With regrouping $$	Children begin to interpret remainders within context - they begin to understand that remainders can be written as fractions and decimals because they are equivalent.

Examples of Year 5 varied fluency

Here is a method to calculate 4,892 divided by 4 using place value counters and short division.

Use this method to calculate:

$6,610 \div 5$

$2,472 \div 3$
$9,360 \div 4$

Examples of Year 5 reasoning and problem solving

 Jack is calculating $2,240 \div 7$He says you can't do it because 7 is
larger than all of the digits in the
number.

Do you agree with Jack?
Explain your answer.

Use $<,>$ or $=$ to make the statements correct.

$3,495 \div 5 \longrightarrow$| $3,495 \div 3$ |
| :--- |
| $8,064 \div 7$ |
| $9,198 \div 7$ |

Mr Porter has saved £8,934
He shares it equally between his three grandchildren.
How much do they each receive?

Explain and correct the working.

End of Year Expectations (National Curriculum Statements)	Teaching and Learning Strategy	Concrete	Pictorial	Abstract
Year 6 Division: - divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context	Short division 2-digits by 1 -digit 3 -digits by 1 -digit 4-digits by 1 -digit Decimals by integers	Children can continue to build on concrete methods taught in previous year groups to support use of short division with larger numbers or within more complex problems. Use place value counters to divide decimals by sharing and grouping. $3.69 \div 3=1.23$	Build on methods taught in Year 4/5 and begin to use to solve more complex calculations. Children draw representations of place value counters alongside written methods to help reinforce understanding of division. Witr regrouping Use part-whole models to help support understanding of partitioning to divide decimals by integers.	Children begin to interpret remainders within context - they begin to understand that remainders can be written as fractions and decimals because they are equivalent.
calculations, including with mixed operations and large numbers - use their knowledge of the order of operations to carry out calculations involving the four operations - solve problems involving addition, subtraction, multiplication and division - use estimation to check answers to calculations and determine, in the context of a problem, an	Long division	Link to previous concrete and pictorial m Step one - exchange 2 thousand for 20 hund Step two- How many groups of 12 can I mak one is how many hundreds we have left. Step three - Exchange the one hundred for 14 shows how many tens I have, the 12 is h Exchange the 2 tens for 20 ones. The 24 is $\begin{array}{r} 0212 \\ 12 \begin{array}{r} 2544 \\ 24 \\ \hline 14 \\ \hline 12 \\ \hline 24 \\ 24 \\ \hline 0 \end{array} \end{array}$	hods but explain that these would not be ds so we now have 25 hundreds. $1 2 \longdiv { \frac { 0 } { 2 ^ { 2 } 5 4 4 } }$ with 25 hundreds? The 24 shows the hundreds tens. How many groups of 12 can I make with many I grouped and the 2 is how many ten w many ones I have grouped and the 0 is wh	fficient.

When modelling this method make it as visual as possible to aid understanding. Use arrows to show the movement of digits and to help children correctly line up digits within place value columns. Teach children to write 'Fact Boxes' of known multiplication facts to help them to become more accurate in their division. It may also help children to write the multiplication next to each step.

\quad Fact Box	
2×14	$=28$
5×14	$=70$
10×14	$=140$

Modelling clay is sold in two different shops. Shop A sells four pots of clay for $£ 7.68$ Shop B sells three pots of clay for $£ 5.79$ Which shop has the better deal?
Explain your answer.

Year 6 has 2,356 pencil crayons for the year.
They put them in bundles, with 12 in each bundle.

How many complete bundles can be made?

Examples of Year 6 reasoning and problem solving

$$
\begin{aligned}
& C \text { is } \frac{1}{4} \text { of } A \\
& B=C+2
\end{aligned}
$$

Use the clues to complete the division.

Each division sentence can be completed using the digits below.

12.

\div \square
4.$\div \square$

Here are two calculations.

Find the difference between A and B .

Tommy says,
To calculate $4,320 \div 15$
I will first divide 4,320
by 5 then divide the answer by 10

Do you agree?
Explain why.

[^0]: How do you know you have fond all the

